Nuclear Morphological Characteristics in Breast Cancer: Correlation with Hormone Receptor and Human Epidermal Growth Factor Receptor 2

Author:

Li Jiayu1ORCID,Zhou Yehan1ORCID,Li Yunzhu1ORCID,Liu Yang1ORCID

Affiliation:

1. Department of Pathology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China

Abstract

Background. Hormone receptor (HR) and human epidermal growth factor receptor 2 (HER2) are the common diagnostic/prognostic markers in breast cancer. Few articles have recently reported the correlation between cytology and molecular subtypes. We combined nuclear morphological characteristics with HR and HER2 status to observe the relationship and provide ideas for machine learning. Methods. We reanalyzed fine-needle aspiration cytology samples and core-needle puncture histological specimens from 142 patients with invasive breast cancer between March 2019 and December 2019, and the findings were compared with the two groups (HR+/HER2- and HR-/HER2+) following nuclear cytomorphological features: nuclear/cytoplasmic ratio, difference of nuclear size, nuclear pleomorphism, chromatin feature, nuclear membrane and nucleoli, and Nottingham grading. Results. Two groups were significantly associated with the difference of nuclear size, nuclear pleomorphism, and nucleoli ( P < 0.001 ) and consistent with histological grading ( P < 0.001 ). Moreover, nucleolar characteristics of size and number had obviously statistical significance ( P < 0.001 ). Multiple micro-nucleoli were frequently seen in the HR+/HER2- group compared with the HR-/HER2+ group which mostly were observed centered medium-large nucleoli. We described four interesting nuclear morphologies in the experiment. Conclusions. There were significant differences in nuclear characteristics between two groups. HR and HER2 status not only might be predicted in cytological samples, but some specific nuclear morphological features might have potential value to help us understand molecular function and predict more information.

Publisher

Hindawi Limited

Subject

Cancer Research,Cell Biology,Molecular Medicine,General Medicine,Pathology and Forensic Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3