Affiliation:
1. Department of Electrical and Computer Engineering, Wayne State University, Detroit, MI 48202, USA
Abstract
This paper looks at techniques to simplify data analysis of large multivariate military sensor systems. The approach is illustrated using representative raw data from a video-scene analyzer. First, develop fuzzy neural net relations using Matlab. This represents the best fidelity fit to the data and will be used as reference for comparison. The data is then converted to Boolean, and using Boolean Decision Diagrams (BDD) techniques, to find similar relations between input vectors and output parameter. It will be shown that such Boolean techniques offer dramatic improvement in system analysis time, and with minor loss of fidelity. To further this study, Boolean Neural Net techniques (BNN) were employed to bridge the Fuzzy Neural Network (FNN) to BDD representations of the data. Neural network approaches give an estimation method for the complexity of Boolean Decision Diagrams, and this can be used to predict the complexity of digital circuits. The neural network model can be used for complexity estimation over a set of BDDs derived from Boolean logic expressions. Experimental results show good correlation with theoretical results and give insights to the complexity. The BNN representations can be useful as a means to FPGA implementation of the system relationships and can be used in embedded processor based multi-variate situations.
Subject
Computational Mathematics,Control and Optimization,Control and Systems Engineering