Device-Free Wireless Localization Using Artificial Neural Networks in Wireless Sensor Networks

Author:

Sun Yongliang12ORCID,Zhang Xuzhao2,Wang Xiaocheng2ORCID,Zhang Xinggan1

Affiliation:

1. School of Electronic Science and Engineering, Nanjing University, Nanjing 210023, China

2. College of Computer Science and Technology, Nanjing Tech University, Nanjing 211816, China

Abstract

Currently, localization has been one of the research hot spots in Wireless Sensors Networks (WSNs). However, most localization methods focus on the device-based localization, which locates targets with terminal devices. This is not suitable for the application scenarios like the elder monitoring, life detection, and so on. In this paper, we propose a device-free wireless localization system using Artificial Neural Networks (ANNs). The system consists of two phases. In the off-line training phase, Received Signal Strength (RSS) difference matrices between the RSS matrices collected when the monitoring area is vacant and with a professional in the area are calculated. Some RSS difference values in the RSS difference matrices are selected. The RSS difference values and corresponding matrix indices are taken as the inputs of an ANN model and the known location coordinates are its outputs. Then a nonlinear function between the inputs and outputs can be approximated through training the ANN model. In the on-line localization phase, when a target is in the monitoring area, the RSS difference values and their matrix indices can be obtained and input into the trained ANN model, and then the localization coordinates can be computed. We verify the proposed device-free localization system with a WSN platform. The experimental results show that our proposed device-free wireless localization system is able to achieve a comparable localization performance without any terminal device.

Funder

Natural Science Foundation of the Jiangsu Higher Education Institutions of China

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3