Treatment of Distillery Industrial Wastewater Using Ozone Assisted Fenton’s Process: Color and Chemical Oxygen Demand Removal with Electrical Energy per Order Evaluation

Author:

Asaithambi Perumal1ORCID,Busier Yesuf Mamuye1ORCID,Kebede Debela Seifu1ORCID,Govindarajan Rajendran2ORCID,Hariharan N. M.3ORCID,Alemayehu Esayas14ORCID

Affiliation:

1. Faculty of Civil and Environmental Engineering, Jimma Institute of Technology, Jimma University, P.O. Box—378, Jimma, Ethiopia

2. Department of Chemical Engineering, Hindustan Institute of Technology and Science, Rajiv Gandhi Salai, Padur, Chennai 603103, Tamil Nadu, India

3. Department of Biotechnology, Sree Sastha Institute of Engineering and Technology, Chembarambakkam, Chennai 600123, Tamil Nadu, India

4. Africa Center of Excellence for Water Management, Addis Ababa University, P.O. Box-1176, Addis Ababa, Ethiopia

Abstract

Ozonation is one of the most effective and efficient advanced oxidation processes (AOPs) and has shown great potential in the treatment of industrial effluent and wastewater. In the present work, the ozone-Fenton process for % COD and color removal together with electrical energy per order (EE/O) determination for distillery industrial wastewater (DIW) was established. The process was developed by combining the ozone (O3) with the Fenton (Fe2+/H2O2) process. The ozone-Fenton (O3/Fe2+/H2O2) was compared with other treatment processes such as O3, Fe2+, H2O2, O3/Fe2+, O3/H2O2, and Fe2+/H2O2 for EE/O together with % COD and color removal efficiency for DIW. The removal of color at 100% and chemical oxygen demand (COD) of 96.875% were achieved with a minimum of EE/O of 0.5315 kWh/m3 using the O3/Fe2+/H2O2 process by operating at optimum conditions. The % COD and color values obtained using O3/Fe2+/H2O2 were significantly higher than those obtained using O3, Fe2+, H2O2, O3/Fe2+, O3/H2O2, and Fe2+/H2O2 processes. The % color, % COD removal, and its associated EE/O were evaluated by varying Fe2+, H2O2, O3 inlet and COD concentration, and initial wastewater pH using the O3/Fe2+/H2O2 process. The synergy effect of the O3 and Fe2+/H2O2 processes was evaluated and reported. Our experimental findings suggest that combining O3 with the Fe2+/H2O2 process could effectively treat industrial effluent and wastewater.

Publisher

Hindawi Limited

Subject

General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3