Data Collecting and Energy Charging Oriented Mobile Path Design for Rechargeable Wireless Sensor Networks

Author:

Zhang Meiyan12ORCID,Cai Wenyu3ORCID

Affiliation:

1. College of Electrical Engineering, Zhejiang University of Water Resources and Electric Power, Hangzhou 310018, China

2. Key Laboratory for Technology in Rural Water Management of Zhejiang Province, Zhejiang University of Water Resources and Electric Power, Hangzhou 310018, China

3. College of Electronics and Information, Hangzhou Dianzi University, Hangzhou 310018, China

Abstract

Energy efficiency is one of the most important concerns in wireless sensor networks (WSNs). As far as we know, almost all energy efficiency researches of WSNs focus on energy conservation in some respects such as wireless data transmission and minimal data collection. Recently, wireless energy transfer has been a promising technology to prolong the lifetime of microsensor nodes, and so the traditional WSNs can be extended to rechargeable WSNs. Rechargeable WSNs is a new type of wireless sensor networks, where each sensor node can replenish energy through wireless charging. For rechargeable WSNs, it is powered by reusable energy or harvested energy, so the energy efficiency problem can be completely solved. Furthermore, mobile data collection has been well recognized to have significant advantages over sensory data collection manner using static sinks. In this paper, by employing one or multiple recharging sinks to replenish energy for sensor nodes and collect sensory data concurrently, we propose a novel wireless charging and mobile data collecting method based on self-organizing map (SOM) unsupervised learning for rechargeable WSNs. In other words, the sink mobility and energy replenishment are jointly considered in this paper. Finally, we evaluate the performance of the proposed algorithms through software simulation. Extensive results verify that the performance of the proposed algorithm can reduce the travel cost of mobile sink and improve the residual energy level for sensor nodes. As a results, it is very promising in the field of data acquisition in wireless sensor networks.

Funder

Fundamental Research Funds for the Provincial Universities of Zhejiang

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Instrumentation,Control and Systems Engineering

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3