Numerical Simulation of Rock Breaking by High-Temperature and High-Pressure Water under Thermal Driving

Author:

Hu Shaobin1ORCID,Cai Yukang1ORCID,Zhang Lin1,Yan Zhengyong1,Pang Shuogang1

Affiliation:

1. College of Civil and Transportation Engineering, HoHai University, Nanjing Jiangsu 210098, China

Abstract

To solve the difficult problems in the field of unconventional oil and gas extraction and hard rock excavation in urban underground spaces, this paper proposes a rock-breaking technique with high-temperature and high-pressure water under thermally driven conditions and establishes a coupled thermal-fluid-solid model with COMSOL Multiphysics (COMSOL Co., Ltd. Shanghai, China). Different simulation groups are established by controlling variables to explore the effects of the surrounding rock load, heat source power, and Biot coefficient on the damage evolution during thermally driven rock breaking. To make the results relevant to practical engineering, the damage evolution results under the maximum normal stress criterion, maximum normal strain criterion, and Coulomb-Navier damage criterion are considered, and a comparative analysis is performed. The results of this study show that an increase in unilateral load and heat source power accelerates the damage evolution rate, while an increase in bilateral load and Biot coefficient has the opposite effect. The damage evolution rate controlled by the maximum normal stress criterion is the fastest under general conditions. Finally, the advantages in rock breaking provided by the established method are verified by a comparison of results from the proposed model and a conventional hydraulic fracturing model.

Funder

Ministry of Housing and Urban Rural Development

Publisher

Hindawi Limited

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3