Improved Deep Neural Network for Cross-Media Visual Communication

Author:

Miao Yubo1ORCID

Affiliation:

1. College of Furniture and Art Design, Central South University of Forestry and Technology, Changsha, Hunan 410000, China

Abstract

Cross-media visual communication is an extremely complex task. In order to solve the problem of segmentation of visual foreground and background, improve the accuracy of visual communication scene reconstruction, and complete the task of visual real-time communication. We propose an improved generative adversarial network. We take the generative adversarial network as the basis and add a combined codec package to the generator, while configuring the generator and discriminator as a cascade structure, preserving the feature upsampling and downsampling convolutional layers of visual scenes with different layers through correspondence. To classify features with different visual scene layers, we add a new auxiliary classifier based on convolutional neural networks. With the help of the auxiliary classifier, similar visual scenes with different feature layers have a more accurate recognition rate. In the experimental part, to better distinguish foreground and background in visual communication, we perform performance tests on foreground and background using separate datasets. The experimental results show that our method has good accuracy in both foreground and background in cross-media communication for real-time visual communication. In addition, we validate the efficiency of our method on Cityscapes, NoW, and Replica datasets, respectively, and experimentally demonstrate that our method performs better than traditional machine learning methods and outperforms deep learning methods of the same type.

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Reference38 articles.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Artificial Intelligence System Based on Visual Communication Using Convolutional Auto-Encoder and Convolutional Neural Network;2024 Second International Conference on Data Science and Information System (ICDSIS);2024-05-17

2. Generative Adversarial Networks for Cybersecurity Threat;2023 International Conference on Recent Advances in Science and Engineering Technology (ICRASET);2023-11-23

3. Image Processing Method of a Visual Communication System Based on Convolutional Neural Network;International Journal on Semantic Web and Information Systems;2023-09-11

4. Improved Generative Adversarial Networks for Student Classroom Facial Expression Recognition;Scientific Programming;2022-07-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3