Research on Optimization Scheme for Blocking Artifacts after Patch-Based Medical Image Reconstruction

Author:

Xu Yan12ORCID,Hu Shunbo2ORCID,Du Yuyue1ORCID

Affiliation:

1. College of Computer Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China

2. College of Information Science and Engineering Linyi University, Shandong Province 276005, China

Abstract

Due to limitations of computer resources, when utilizing a neural network to process an image with a high resolution, the typical processing approach is to slice the original image. However, because of the influence of zero-padding in the edge component during the convolution process, the central part of the patch often has more accurate feature information than the edge part, resulting in image blocking artifacts after patch stitching. We studied this problem in this paper and proposed a fusion method that assigns a weight to each pixel in a patch using a truncated Gaussian function as the weighting function. In this method, we used the weighting function to transform the Euclidean-distance between a point in the overlapping part and the central point of the patch where the point was located into a weight coefficient. With increasing distance, the value of the weight coefficient decreased. Finally, the reconstructed image was obtained by weighting. We employed the bias correction model to evaluate our method on the simulated database BrainWeb and the real dataset HCP (Human Connectome Project). The results show that the proposed method is capable of effectively removing blocking artifacts and obtaining a smoother bias field. To verify the effectiveness of our algorithm, we employed a denoising model to test it on the IXI-Guys human dataset. Qualitative and quantitative evaluations of both models show that the fusion method proposed in this paper can effectively remove blocking artifacts and demonstrates superior performance compared to five commonly available and state-of-the-art fusion methods.

Funder

Natural Science Foundation of Shandong Province

Publisher

Hindawi Limited

Subject

Applied Mathematics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,Modeling and Simulation,General Medicine

Reference23 articles.

1. Research progress of medical image processing based on deep learning;J. Lin;Life Science Instruments,2018

2. Review for deep learning based on medical imaging diagnosis;Q. Zhang;Computer Science,2017

3. Deep learning in medical image registration: a review

4. Quicksilver: Fast predictive image registration – A deep learning approach

5. Brain deformable registration using global and local label-driven deep regression learning in the first year of life;S. Hu;IEEE Access,2019

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3