Dynamic Characteristics of LOX/Kerosene Variable Thrust Liquid Rocket Engine Test System Based on General Modular Simulation Method

Author:

Su Qingdong12ORCID,Wang Jinjin1ORCID,Yan Mingxia12,Sun Zhensheng1,Huang Weifeng2,Zha Bailin3ORCID

Affiliation:

1. Missile Engineering College, Rocket Force University of Engineering, Xi’an 710025, China

2. Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China

3. Project Management Center, Beijing 100085, China

Abstract

For the research demand of reusable LOX/kerosene variable thrust liquid rocket engine, a test system with electric displacement pumps is designed and a multidisciplinary modular dynamic simulation method based on AMESim platform is used to analyze the system. The method comprehensively considers the characteristics of complex components in the engine and realizes the fast module assembly and variable step size solution. Considering the combustion model of thrust chamber, the positive displacement pump model with complex leakage channels, and the cooling jacket heat transfer model, the component dynamic equations are deduced and the final model simulation results reveal that the system has a smooth ignition, stage turning, and shutdown process. The thrust can reach 6900 N in high working condition and the variable thrust ratio is 5 : 1. The dynamic characteristics of the system show that the performance error of main pump components is less than 5%, the maximum average temperature rise of the thrust chamber coolant is about 28°C, and the time of stage adjustment is within 300 ms, which mean the overall design of the system is reasonable. Although the accumulation of LOX before kerosene injection can adversely affect the temperature of the thrust chamber, large pressure pulses do not occur due to the ignitor’s duty flame. Moreover, the pintle injectors based on PID control can effectively stabilize the pressure drop at lower conditions. The system and the simulation method provide important support for the actual engine test and the general LRE dynamic characteristics analysis.

Funder

Fundamental Research Project

Publisher

Hindawi Limited

Subject

Aerospace Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3