Cymbopogon nardus Leaf Ash as an Alternative Material for Enhancing Concrete Strength

Author:

Bunyamin Bunyamin1,Hady Munirul1,Munirwan Reza Pahlevi2ORCID,Putra Jaya Ramadhansyah3ORCID

Affiliation:

1. Department of Civil Engineering, Faculty of Engineering, Universitas Iskandarmuda, Banda Aceh 23234, Indonesia

2. Department of Civil Engineering, Faculty of Engineering, Universitas Syiah Kuala, Jln. Tgk. Syech Abdurrauf, No 7, Darussalam, Banda Aceh 23111, Indonesia

3. Faculty of Civil Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Kuantan 26300, Pahang, Malaysia

Abstract

Numerous waste materials containing calcium and silica have been adopted as partial cement substitutes. This practice is intended to reduce the environmental impact of cement production, specifically in terms of carbon dioxide (CO2) emissions. However, plantation waste, specifically waste from Cymbopogon nardus leaf, has not been completely exploited. The presence of silica in C. nardus leaf ash (CNLA) presents an opportunity to partially replace cement in concrete. The purpose of this study is to determine the effect of substituting CNLA at 0%, 5%, 10%, and 15% as a partial replacement for cement on the compressive and tensile strengths of concrete after 28 days of curing. For testing purposes, 15 cm × 30 cm cylindrical concrete specimens were formed. The investigation was conducted following ACI 211.1-91 (American Concrete Institute) and ASTM (American Society for Testing and Materials) standards. The required compressive strength for the concrete was 17.00 MPa. The results of the study indicate that the addition of CNLA to cement at concentrations of 0%, 5%, 10%, and 15% resulted in compressive strengths of 21.56, 21.12, 22.58, and 17.88 MPa, respectively. The results of the split tensile strength test were 2.43, 2.72, 2.87, and 3.18 MPa, respectively. According to the findings of this study, increasing the amount of CNLA in cement by 10% can increase the compressive and tensile strengths of concrete. In addition, as the percentage of CNLA exceeds 10%, the workability of the concrete decreases, posing challenges in attaining the targeted strength of the concrete.

Funder

Lembaga Layanan Pendidikan Tinggi Wilayah XIII

Publisher

Hindawi Limited

Subject

Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3