Probabilistic Caching Placement in the Presence of Multiple Eavesdroppers

Author:

Shi Fang1,Fan Lisheng1ORCID,Liu Xin2,Na Zhenyu3,Liu Yanchen4

Affiliation:

1. School of Computer Science and Educational Software, Guangzhou University, Guangzhou 510006, China

2. School of Information and Communication Engineering, Dalian University of Technology, Dalian, China

3. School of Information Science and Technology, Dalian Maritime University, Dalian 116026, China

4. Department of Building Science, Tsinghua University, Beijing 100084, China

Abstract

The wireless caching has attracted a lot of attention in recent years, since it can reduce the backhaul cost significantly and improve the user-perceived experience. The existing works on the wireless caching and transmission mainly focus on the communication scenarios without eavesdroppers. When the eavesdroppers appear, it is of vital importance to investigate the physical-layer security for the wireless caching aided networks. In this paper, a caching network is studied in the presence of multiple eavesdroppers, which can overhear the secure information transmission. We model the locations of eavesdroppers by a homogeneous Poisson Point Process (PPP), and the eavesdroppers jointly receive and decode contents through the maximum ratio combining (MRC) reception which yields the worst case of wiretap. Moreover, the main performance metric is measured by the average probability of successful transmission, which is the probability of finding and successfully transmitting all the requested files within a radius R. We study the system secure transmission performance by deriving a single integral result, which is significantly affected by the probability of caching each file. Therefore, we extend to build the optimization problem of the probability of caching each file, in order to optimize the system secure transmission performance. This optimization problem is nonconvex, and we turn to use the genetic algorithm (GA) to solve the problem. Finally, simulation and numerical results are provided to validate the proposed studies.

Funder

Natural Science Foundation of Guangdong Province

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3