Anonymization of Quasi-Sensitive Attribute Sets in Aggregated Dataset

Author:

Li Yafan12ORCID,Yuan Shuguang12ORCID,Yuan Yulin12ORCID,Chen Chi12,Yu Jing12ORCID

Affiliation:

1. State Key Laboratory of Information Security, Institute of Information Engineering, Chinese Academy of Sciences, Beijing 100093, China

2. School of Cyber Security, University of Chinese Academy of Sciences, Beijing 101400, China

Abstract

The widespread use of Internet of Things (IoT) and Data Fusion technologies make privacy protection an urgent problem to be solved. The aggregated datasets generated in these two scenarios face extra privacy disclosure. We define attribute sets with different sources in an aggregated dataset as quasi-sensitive attribute sets (QS sets). The QS set itself is not sensitive, but internal linking attacks may occur when two QS sets in an aggregated dataset are linked. In this paper, we propose a new privacy model, namely, the QS k-anonymity model. The QS k-anonymity model is effective in preventing internal linking attacks. We provide two algorithms for the QS k-anonymity model, the Greedy QS k-anonymity algorithm and the Efficient QS k-anonymity algorithm. We evaluate our algorithms on real datasets. The experimental results show that the Greedy QS k-anonymity algorithm has good data utility, the Efficient QS k-anonymity algorithm shows better efficiency, and both algorithms are well scalable.

Funder

National Science and Technology Major Project

Publisher

Hindawi Limited

Subject

Computer Networks and Communications,Information Systems

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3