Fiber-Reinforced Magnesium Phosphate Cement-Based Nanocomposites in the Field of Bridge Structure Repair and Strengthening

Author:

Yang Wenwei12ORCID

Affiliation:

1. Lanzhou University, Ministry of Education of China, Key Laboratory of Mechanics on Disaster and Environment in Western China, Lanzhou 730000, Gansu, China

2. Lanzhou University, Civil Engineering & Mechanical College, Department Mechanical & Engineering Science, Lanzhou 730000, Gansu, China

Abstract

Currently, fiber-reinforced magnesium phosphate cement-based nanocomposites are being used in various projects. The unique physical properties of this material allow it to bear the load together with the material in the inherent structure, and it will be better used in the field of bridge structure repair and reinforcement. The purpose of this article is to study the application of fiber-reinforced magnesium phosphate cement-based nanocomposites in the field of bridge structure repair and reinforcement. Through the use of finite element analysis software and various stress sensor materials, the mechanical properties of fiber-reinforced magnesium phosphate cement-based nanocomposites are used to analyze the mechanical properties of damaged bridges in our area after reinforcement treatment and establish a control group (using magnesium phosphate cement-based nanocomposite materials) for comparative experiments. The reinforcement effect of the bridge repair structure under different ballast conditions is studied. Studies have shown that fiber-reinforced magnesium phosphate cement-based nanocomposites can provide excellent reinforcement for damaged bridge structures. Compared to the control group, the strength and stiffness of the repaired structure were significantly improved, the strength increased by 15.7%, and the stiffness increased by 12%. The carrying capacity has also been improved compared to the previous one, from the original 120 t to 150 t.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Introduction and fundamentals of nanocomposites;Nanocomposites-Advanced Materials for Energy and Environmental Aspects;2023

2. State-of-the-art and annual progress of bridge engineering in 2021;Advances in Bridge Engineering;2022-12-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3