Deep Learning Neural Network Model for Tunnel Ground Surface Settlement Prediction Based on Sensor Data

Author:

Cao Yang1,Zhou Xiaokang23,Yan Ke14ORCID

Affiliation:

1. Key Laboratory of Electromagnetic Wave Information Technology and Metrology of Zhejiang Province, College of Information Engineering, China Jiliang University, Hangzhou 310018, China

2. Faculty of Data Science, Shiga University, Hikone 5228522, Japan

3. RIKEN Center for Advanced Intelligence Project, RIKEN, Tokyo 1030027, Japan

4. National University of Singapore, 4 Architecture Drive 117566, Singapore

Abstract

Monitoring and prediction of ground settlement during tunnel construction are of great significance to ensure the safe and reliable operation of urban tunnel systems. Data-driven techniques combining artificial intelligence (AI) and sensor networks are popular methods in the field, which have several advantages, including high prediction accuracy, efficiency, and low cost. Deep learning, as one of the advanced techniques in AI, is demanded for the tunnel settlement forecasting problem. However, deep neural networks often require a large amount of training data. Due to the tunnel construction, the available training data samples are limited, and the data are univariate (i.e., containing only the settlement data). In response to the above problems, this research proposes a deep learning model that only requires limited number of training data for short-period prediction of the tunnel surface settlement. In the proposed complete ensemble empirical mode decomposition with adaptive noise long short term memory (CEEMDAN-LSTM model), single-dimensional data is divided into multidimensional data by CEEMDAN through the complete ensemble empirical mode decomposition. Each component is then predicted by a LSTM neural network and superimposed for obtaining the final prediction result. Experimental results show that, compared with existing machine learning techniques and algorithms, this deep learning method has higher prediction accuracy and acceptable computational efficiency. In the case of small samples, this method can significantly improve the accuracy of time series forecasting.

Funder

Natural Science Foundation of Zhejiang Province

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3