An Interactive Holographic Multimedia Technology and Its Application in the Preservation and Dissemination of Intangible Cultural Heritage

Author:

Tang Taixiang1,Zhang Huihua2ORCID

Affiliation:

1. School of Culture and Law, Anhui Business College, Wuhu 241002, Anhui, China

2. College of Science and Art, Jingdezhen Ceramic University, Jingdezhen 333000, Jiangxi, China

Abstract

Digital technology offers numerous advantages, such as preserving the authenticity, replicating reality, and facilitating dissemination. It enables the preservation of intangible cultural heritage (ICH) in its original form and allows for the creation of comprehensive graphic, audio, and visual databases. Among these technologies, holographic technology holds promise for protecting ICH and promoting its dissemination. This paper focuses on interactive holographic technology and presents the design and implementation of a dynamic holographic display system that combines digital hologram (DH) and computer-generated hologram (CGH) to showcase 3D images consisting of both virtual and real objects. Real-time loading of DH into a spatial light modulator enables the optical reproduction of real objects, while the loading of two CGHs into other spatial light modulators facilitates the optical reproduction of virtual objects. Computational holography allows for the addition of virtual information, such as coordinate text, and the fusion of the three reconstructed images in space, resulting in an augmented reality experience and enhanced 3D display of real objects. An experimental setup employing three liquid crystal on silicon (LCOS) devices confirms the validity of the proposed method. Compared to other techniques, this approach demonstrates improved image signal-to-noise ratio, reduced alignment errors, and wider coverage of light traversal for laser 3D reconstruction images. The holographic technology presented in this paper enables the fusion display of real and virtual scenes and real-time two-way interaction between the audience and virtual images. This research holds significant practical value in promoting the effective dissemination and protection of ICH.

Funder

Anhui University of Business

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Media Technology,Communication

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3