Simulating Univariate and Multivariate Tukey g-and-h Distributions Based on the Method of Percentiles

Author:

Kuo Tzu Chun1ORCID,Headrick Todd C.1

Affiliation:

1. Section on Statistics and Measurement, Department of EPSE, Southern Illinois University Carbondale, P.O. Box 4618, 222-J Wham Building, Carbondale, IL 62901-4618, USA

Abstract

This paper derives closed-form solutions for the g-and-h shape parameters associated with the Tukey family of distributions based on the method of percentiles (MOP). A proposed MOP univariate procedure is described and compared with the method of moments (MOM) in the context of distribution fitting and estimating skew and kurtosis functions. The MOP methodology is also extended from univariate to multivariate data generation. A procedure is described for simulating nonnormal distributions with specified Spearman correlations. The MOP procedure has an advantage over the MOM because it does not require numerical integration to compute intermediate correlations. Simulation results demonstrate that the proposed MOP procedure is superior to the MOM in terms of distribution fitting, estimation, relative bias, and relative error.

Publisher

Hindawi Limited

Subject

Marketing,Organizational Behavior and Human Resource Management,Strategy and Management,Drug Discovery,Pharmaceutical Science,Pharmacology

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Derivation of the Percentile Based Parameters for Tukey HH, HR and HQ Distributions;Springer Proceedings in Mathematics & Statistics;2022

2. Derivation of the percentile based Tukey distributions;Behaviormetrika;2022-01

3. A modification in generalized classes of distributions: A new Topp–Leone class as an example;Communications in Statistics - Theory and Methods;2020-02-17

4. Parameter estimation of Tukey-type distributions: A comparative analysis;Communications in Statistics - Simulation and Computation;2019-04-03

5. A characterization of power method transformations through the method of percentiles;Communications in Statistics - Simulation and Computation;2017-07-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3