Parametric Study on Dynamic Response of FRP Masonry Structures under the Impacts of Debris Flow

Author:

Li Peizhen12ORCID,Li Tangzhenhao2,Lu Zheng12ORCID,Li Jin2

Affiliation:

1. State Key Laboratory of Disaster Reduction in Civil Engineering, Tongji University, Shanghai, China

2. Research Institute of Structural Engineering and Disaster Reduction, Tongji University, Shanghai, China

Abstract

The aim of this study was to investigate the influences of different parameters on the performance of fiber reinforced polymer (FRP) masonry structures under debris flow using finite element models that were established using the software LS-DYNA. The overall structural responses under the impacts of viscous debris flows were analyzed based on an in-depth parametric study of some key factors (fiber types, relative impact positions, etc.). The results show that the diagonal and intersecting parallel types of FRP arrangements elicit better performances than horizontal types. Use of wider fiber cloths leads to the minimization of the structural response after its impact by debris flow. In addition, glass fiber reinforced polymer (GFRP) yields the best results among all studied materials in reducing local damage, while carbon fiber reinforced polymer (CFRP) yields a better overall structural response. Impact positions at the center of the wall are more unfavorable than those at the corners.

Funder

National Key Technology R&D Program

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3