Characterization of large area flexible plastic solar cells based on conjugated polymer/fullerene composites

Author:

Gebeyehu Desta1,Padinger F.2,Brabec C. J.1,Fromherz T.2,Hummelen J. C.3,Sariciftci N. S.1

Affiliation:

1. Christian Doppler Laboratory for Plastic Solar Cells, Physical Chemistry, Johannes. Kepler University of Linz, Altenbergerstr. 69, Linz A-4040, Austria

2. Quantum Solar Energy Linz, Linz A-4040, Austria

3. University of Groningen, AG Groningen 9747, The Netherlands

Abstract

The development of solar cells based on composites of organic conjugated semi-conducting polymers with fullerene derivatives can provide a new method in the exploitation of solar energy. Organic solar cells must fulfill the criteria of stability, efficiency and reduction of production costs to find new applications. Specially, the bulk donor-acceptor heterojunctions between conjugated polymers and fullerenes have been successfully utilized for photovoltaic devices with high carrier collection efficiency compared to the devices made from single components. In this work we present measurements of the photovoltaic response of bulk donor-acceptor heterojunction between the conjugated polymer (as a donor, D) poly(3- octylthiophene), P3OT and fullerenes, (as acceptor, A), deposited between indium tin oxide and aluminum electrodes. These devices are based on ultrafast, reversible, metastable photoinduced electron transfer and charge separation.The quality and homogeneity of composite films as well as the choice of the substrates strongly influence the efficiency of the solar cells. One of the most important limiting factors in the performance of this present types of molecular solar cells based on interpenetrating networks of conjugated polymers and fullerene derivatives is the charge carrier transport in the active layer. This transport is driven by the electrical field provided externally by the top and bottom electrodes with different work functions. We present here efficiency and stability studies on large area (6 cm×6 cm) flexible plastic solar cells with monochromatic energy conversion efficiencyηeabout 1.4% and carrier collection efficiency nearly 20%.

Funder

Christian Doppler Foundations

Publisher

Hindawi Limited

Subject

General Materials Science,Renewable Energy, Sustainability and the Environment,Atomic and Molecular Physics, and Optics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3