Aggregation of cation-anionic and related polymethine dyes

Author:

Tatikolov A. S.1,Ponterini G.2,Krasnaya Zh. A.3

Affiliation:

1. Institute of Biochemical Physics, Russian Academy of Sciences, Kosygin Str. 4, Moscow 117977, Russia

2. Dipartimento di Chimica, Universita di Modena, via Campi 183, Modena 41110, Italy

3. Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Pr. 47, Moscow 117913, Russia

Abstract

Absorption, fluorescence, and fluorescence excitation spectra were studied for a number of cation-anionic and related anionic polymethine dyes in weakly polarand nonpolarsolvents, as well as in binary mixtures of solvents of different polarity. For some dyes, aggregation is observed in toluene or acetonitrile-toluene mixtures with low amounts of acetonitrile, which is revealed as appearance of new absorption bands and/or broadening of the initial bands of a monomeric dye. Solvent mixtures butyronitrilehexane with low butyronitrile content were found to greatly stimulate the formation of dye aggregates for most of the dyes studied. The absorption spectra of the aggregates are often blue-shifted with respect to the corresponding absorption spectra of parent monomeric dyes and/or represent broad continuums located both in the blue and red regions. For one of the cation-anionic dyes studied, which consists of3,3-diethylthiamonomethinecyanine cation and trimethinebenzoxanine anion, fluorescent aggregates were observed; their broad fluorescence band is located in the long-wavelength region. For this dye, gradual transition from nonfluorescent aggregates to fluorescent ones and then to monomeric ion pairs and dissociated ions was observed in butyronitrile-hexane mixtures with growing butyronitrile content.

Funder

Russian Foundation for Basic Research

Publisher

Hindawi Limited

Subject

General Materials Science,Renewable Energy, Sustainability and the Environment,Atomic and Molecular Physics, and Optics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3