Affiliation:
1. Environmental Research Centre, University of Milan; via C. Golgi ,19, Milan I-20133, Italy
2. Department of Materials Science, University of Milano Bicocca, Milan I-20126, Italy
3. CNR, ISTM, Institute of Molecular Sciences and Technologies, Milan I-20133, Italy
4. Department of Inorganic Technology and Environmental Protection, Faculty of Industrial Chemistry, Polytechnic University of Bucharest, Romania
5. R&D Group, B.I.T. srl, Milan I-20121, Italy
Abstract
Kinetics of photocatalytic oxidation of methane, ethane,n-heptane,n-decane, andn-dodecane, to yield intermediates, and photomineralisation of intermediates, to yield carbon dioxide and water, was studied in aqueous solution, by a laboratory-scale photoreactor and photocatalytic membranes immobilizing30±3wt.% ofTiO2, in the presence of stoichiometric hydrogen peroxide as oxygen donor. The whole volume of irradiated solution was4.000±0.005L, the ratio between this volume and the geometrical apparent surface of the irradiated side of the photocatalytic membrane was3.8±0.1cm, and the absorbed power 0.30W/cm (cylindrical geometry). A kinetic model was used, by which mineralisation of substrate toCO2was supposed to occur, by kinetic constantsk1, through one single intermediate, mediating the behaviour of all the numerous real intermediates formed in the path from the substrate toCO2(kinetic constants of formation of the latter beingk2). A competitive Langmuirian adsorption of both substrate and “intermediate” was also supposed to be operative, as expressed by apparent adsorption constantsk1andk2, possessing a, partly at least, kinetic significance. By Langmuir-Hinshelwood treatment of initial rate data, starting values of thekandKcouples were obtained, from which, by a set of differential equations, the final optimised parameters,k1andk1,k2andK2, were calculated, able fit the whole photomineralisation curve, and not only its initial segment, as the Langmuirian parameters do. The parameters of present work are critically compared with those obtained in two preceding set of studies relative ton-alkanoic acids and ton-alkanols. They are interpreted on the basis of a closer behaviour of hydrocarbons to alkanols, from the photocatalytic point of view, than to carboxylic acids are. Discussion of limiting effective quantum yields, and their comparison with maximum, theoretical values, are also carried out.
Funder
Polytechnic University of Bucharest
Subject
General Materials Science,Renewable Energy, Sustainability and the Environment,Atomic and Molecular Physics, and Optics,General Chemistry
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献