Experimental Study on the Seismic Performance of Insulated Single-Sided Composite Shear Walls under Different Shear Spans and Axial Compression Ratios

Author:

Sun Qiang1ORCID,Zhang Shoufeng1,Liu Ke1ORCID,Wu Xinyi1ORCID,Zhang Guowei2,Cheng Bei2

Affiliation:

1. China Architecture Design and Research Group, Beijing 100044, China

2. Beijing University of Civil Engineering and Architecture, Beijing 100044, China

Abstract

The new insulated single-sided composite shear wall (NISCSW) composition involves setting a precast wall panel on one side and an insulation panel on the other side, with a middle cavity for casting concrete. To investigate the seismic performance of NISCSW under different shear spans and axial compression ratios, eight specimens are made, including six composite and two cast-in-place walls. The shear span ratio is controlled at 1.2 and 1.9, and the axial compression ratio is controlled at 0.1, 0.3, and 0.4. The specimens are subjected to quasistatic tests to analyze failure modes, hysteresis characteristics, stiffness degradation, displacement ductility, and energy dissipation capacity and to compare the seismic performance of the composite and cast-in-place walls. Results show that for each composite specimen, under the same axial compression ratio, the large shear span ratio specimen has a lower ultimate bearing capacity and faster stiffness degradation but better ductility and postyield energy dissipation capacity. Under the same shear span ratio, the high axial compression ratio specimen had a higher ultimate bearing capacity, slightly worse ductility, and similar stiffness degradation and energy dissipation capacity compared to other specimens. Compared with the cast-in-place specimen with the same axial compression ratio, the composite specimen failure mode and hysteresis characteristics are similar, and the ductility and energy dissipation capacity are comparable to the cast-in-place shear wall specimen, indicating that NISCSW has similar seismic performance to the cast-in-place shear wall under conditions of a large shear span ratio and high axial compression ratio. Based on the test results, the program ABAQUS is used to simulate the specimens. Compared with the test results, the simulated specimen failure mode is consistent with the test results, and the hysteresis and skeleton curves are consistent with the test curve, indicating that the model is correct, reliable, and can be verified with test results.

Publisher

Hindawi Limited

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3