Revealing the Diversity of the Mycobiome in Different Phases of Ticks: ITS Gene-Based Analysis

Author:

Sun Shiwei12ORCID,Lin Yulian13ORCID,Han Jing14ORCID,He Zhen1,Zhang Lin1ORCID,Zhou Qi14,Li Ruishan13ORCID,Zhang Wenkai14ORCID,Lu Zhenhua1ORCID,Shao Zhongjun1ORCID

Affiliation:

1. Department of Epidemiology, School of Public Health, Air Force Medical University, Xi’an 710032, China

2. Baotou Medical College, Baotou 014040, China

3. Gansu University of Chinese Medicine, Lanzhou 730000, China

4. Shanxi University of Chinese Medicine, Xianyang 712046, China

Abstract

Ticks are obligate ectoparasites and vectors of a variety of pathogens in humans and animals. Certain tick-borne pathogens (TBPs) have been identified as the cause of zoonoses, posing potentially significant threats to the human health and livestock industries. Fungi are one of the major TBPs that can affect ticks and cause disease in humans. At present, there are few studies on the diversity of fungal microbial communities carried by Ixodes. Therefore, profiling tick-borne fungi will contribute to understanding the tick-fungal interaction. This study evaluated the community profile and differences in the fungal microbiome in Ixodidae collected on parasitic ticks or nonparasitic ticks in Wuwei, Gansu Province, China. The Shannon index, Simpson index, and Richness index were used to evaluate the diversity of mycobiome. Principle coordinates analysis (PCoA) was conducted to determine patterns of diversity in mycobiome. Using correlation analysis to determine the correlation of mycobiome. The results show that the high-throughput sequencing of the internal transcribed spacer gene generated 3,634,943 raw reads and 7,482 amplicon sequence variants. The dominant tick species in this region was Dermacentor nuttalli (Ixodidae). The mycobiome belonged to four classes—Dothideomycetes, Sordariomycetes, Ustilaginomycetes, and Tremellomycetes—and more than 261 genera, the most abundant genera were Cladosporium, Purpureocillium, Aureobasidium, Tranzscheliella, and Sporormiella. Alpha diversity indicated that the abundance and evenness of mycobiome were marginally higher in nonparasitic ticks than in parasitic ticks. PCoA showed that the community structures of parasitic ticks vary from nonparasitic ticks, samples from nonparasitic ticks tended to cluster more closely than those from the parasitic ticks. Correlation analysis indicated that there was a significant positive correlation or negative correlation between the mycobiome. Our results indicate that the mycobiome carried by Dermacentor nuttalli had rich diversity, and there was a significant difference in mycobiome between parasitic ticks and nonparasitic ticks. These findings may conducive to understand the complex interaction between ticks and commensal fungi and provide help for the further exploration of the behavioral characteristics of ticks and formulation of effective biological control measures.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3