Analysis and Detection of Road Traffic Accident Severity via Data Mining Techniques: Case Study Addis Ababa, Ethiopia

Author:

Endalie Demeke1ORCID,Abebe Wondmagegn Taye2ORCID

Affiliation:

1. Faculty of Computing and Informatics, Jimma Institute of Technology, Jimma, Ethiopia

2. Faculty of Civil and Environmental Engineering, Jimma Institute of Technology, Jimma, Ethiopia

Abstract

Around the world, road traffic accidents are the leading cause of serious injuries and deaths. Ethiopia is one of the countries that suffer the most from traffic accidents. Every government in every country wants to keep its citizens safe from accidents. To keep people safe from accidents, it is necessary to conduct a detailed analysis of the factors that contribute to high-severity accidents and deaths. As a result, we developed a data mining algorithm-based road traffic accident severity analysis for the Addis Ababa subcity in this study. The longest frequent factors in the dataset were generated using the Apriori algorithm. The Apriori algorithm generates the most frequent factors as sex: male, driver–vehicle relationship: employee, weather condition: normal, pedestrian movement: not a pedestrian, road surface type: asphalt, and accident severity: high severity, with 42.21% and 84.35% support and confidence, respectively. In addition, we created an accident severity level predictive model using a support vector machine. The predictive model has an accuracy of 85%. The proposed predictive model outperforms other well-known predictive models, such as K-nearest neighbors, decision trees, and random forests. As a result, when making decisions or policies in Ethiopia, the government or private organizations should consider the association of factors that lead to serious severe accidents.

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3