Research on Mechanical Properties and Macroscopic Fracture Evolution of Rock with Different Joint Plane Features

Author:

Yu Yongjiang1ORCID,Liu Jingjing1ORCID,Wang Pengbo2ORCID,Yang Yuntao1ORCID,Zhao Shangqing1ORCID

Affiliation:

1. College of Mining Engineering, Liaoning Technical University, Fuxin 123000, China

2. Gas Research Branch, China Coal Technology and Engineering Group Chongqing Research Institute, Chongqing 400037, China

Abstract

To analyze the safety of geological engineering, experimental research on the mechanical properties of the rock joint plane is critical. In this paper, triaxial compression tests are carried out on rock specimens with the different prefabricated joint planes, including different dip angles, roughness, confining pressure and surrounding rock strength, and the strength characteristics, failure modes, stress evolution laws, and crack propagation laws are revealed. The test results show that when the specimen is damaged, the strain, peak stress, and residual strength all increase with the increase of roughness, confining pressure, and strength of surrounding rock but decrease significantly with the increase of joint plane angle. With the increase of stress, the stress-strain curve shows multiple fluctuations, indicating that the specimen occurs multiple slip-stable phenomena during the loading process. With the increase of the angle, the multiple cracks of the specimen gradually merge, and the cracks are always vertical to the joint plane, showing splitting failure. As the roughness of the joint plane increases, the possibility of the joint plane sliding becomes smaller, and the splitting mode of the specimen develops from multiple fractures to a single fracture. As the strength of the surrounding rock increases, the slope of the stress-strain curve gradually increases, and the splitting mode develops from a small number of single splits to multiple splitting penetration failures. The increase of the confining pressure significantly improves the failure strength of the specimen, and the crack number of the damaged specimen also increases significantly. The research results provide theoretical support for scientific analysis of the stability of underground engineering under the disturbance of fissures or faults.

Funder

Liaoning Technical University

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

Reference25 articles.

1. Experimental study of mechanical behavior of rock specimens with different joint roughness coefficient under conventional triaxial compression;S. Q. Yang;Rock and Soil Mechanics,2018

2. Experimental study on the conventional triaxial compression of marble rock samples;Z. D. Dong;Soil Engineering and Foundation,2021

3. Failure mechanism in schistose rocks

4. Laboratory investigation of the mechanical behaviour of Tournemire shale

5. Study on effects of discontinuities on mechanical characters of slate;H. J. Mao;Chinese Journal of Rock Mechanics and Engineering,2005

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3