Production, Characterization, and Cytotoxicity Effects of Silver Nanoparticles from Brown Alga (Cystoseira myrica)

Author:

Mohamed Rehab M.1,Fawzy Eman M.1,Shehab Rabea A.1,Abdel-Salam M.O.2,Salah El Din Rawheya A.3,Abd El Fatah Hesham M.4ORCID

Affiliation:

1. Department of Biology, Faculty of Education, Ain Shams University, Cairo, Egypt

2. Nanotechnology Research Center, Egyptian Petroleum Research Institute (EPRI), Nasr City, Cairo PO 11727, Cairo, Egypt

3. Faculty of Sciences, Al-Azhar University (Girl Branch), Cairo, Egypt

4. Department of Botany, Faculty of Sciences, Ain Shams University, Cairo, Egypt

Abstract

A green, eco-friendly approach to biosynthesizing silver nanoparticles has been reported for marine macroalga (Cystoseira myrica) extract as a reducing agent. Different pH and temperature impact the green synthesis of silver nanoparticles suggesting that the synthesis depends greatly on pH and temperature. The structure and characters of synthesized nanoparticles were confirmed using HR-TEM, DLS, XRD, and FTIR. Cytotoxicity was indicated using provided cell lines of breast carcinoma cells (MCF-7) and human hepatocellular carcinoma cells (HepG2). Shape of silver nanoparticles at pH 9 and 75°C for 30 min was found to be suitable for the biosynthesis process and the AgNPs exhibited a characteristic absorption peak at 434 nm. High Resolution Electron Microscope Transmission reported polydisperse and spherical shapes ranging from 8 to 15 nm. High attractive and repulsive forces between each nanoparticle were recorded with an average zeta-potential value of approximately −29.3 mV. The X-ray diffraction study revealed the crystalline structure of silver nanoparticles. FTIR has shown the bioreduction of silver ions to silver nanoparticles through biomolecules found in algal extract. Silver nanoparticles have been found to have anticancer activity. The cytotoxicity assay was studied against MCF-7 and HepG2 at various concentrations (100, 50, 25, 12.5, 6.25, 3.125, 1.56, 0.78, 0.39, 0.2, and 0.1 μg/mL). By increasing the concentration of AgNPs from 0.1 to 100 μg/mL, the maximum percentage of viability against MCF-7 and HepG2 cell line decreased from 94.55 ± 7.55 to 19.879 ± 0.503 and from 78.56 ± 11.36 to 25.81 ± 2.66 after time exposure, respectively.

Publisher

Hindawi Limited

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3