Development of an MPS Code for Corium Behavior Analysis: 3D Alloy Melting

Author:

Jian Lijun12ORCID,Yu Peng2ORCID,Pei Jie2,Zeng Xiao2,Yuan Yidan2ORCID

Affiliation:

1. Department of Engineering Physics, Tsinghua University, Beijing 100084, China

2. Nuclear Power Safety Research Center, China Nuclear Power Engineering Co Ltd, Beijing 100840, China

Abstract

The moving particle semi-implicit (MPS) method as a Lagrangian method is attracting increasing attention in severe accident analysis. In this paper, we developed an MPS code for the corium behavior analysis with several additional models added: an improved heat transfer model to improve the calculation between different materials, an enthalpy-based viscosity model to realize a smooth transition of viscosity at the solid-liquid interface, and a surface tension model for better simulation of surface shape. Validation of the developed simulation approach is carried out on a classical water column collapse example. The development of the heat transfer model is validated by the example of a one-dimensional semi-infinite plate. A comprehensive example of the melting of “Wood’s alloy” is carried out to verify the capacity of MPS method in the simulation of melting and expansion. The simulation results are in good agreement with the experimental results, which indicates that MPS method promises well in the field of severe accidents.

Funder

National Basic Research Program of China

Publisher

Hindawi Limited

Subject

Nuclear Energy and Engineering

Reference27 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3