Few-Shot Learning for Image-Based Nonintrusive Appliance Signal Recognition

Author:

Matindife L.1ORCID,Sun Y.1ORCID,Wang Z.2ORCID

Affiliation:

1. Department of Electrical and Electronic Engineering Science, University of Johannesburg, Auckland Park 2006, South Africa

2. Department of Electrical Engineering, University of South Africa, Florida 1710, South Africa

Abstract

In this article, we present the recognition of nonintrusive disaggregated appliance signals through a reduced dataset computer vision deep learning approach. Deep learning data requirements are costly in terms of acquisition time, storage memory requirements, computation time, and dynamic memory usage. We develop our recognition strategy on Siamese and prototypical reduced data few-shot classification algorithms. Siamese networks address the 1-shot recognition well. Appliance activation periods vary considerably, and this can result in imbalance in the number of appliance-specific generated signal images. Prototypical networks address the problem of data imbalance in training. By first carrying out a similarity test on the entire dataset, we establish the quality of our data before input into the deep learning algorithms. The results give acceptable performance and show the promise of few-shot learning in recognizing appliances in the nonintrusive load-monitoring scheme for very limited data samples.

Funder

National Research Foundation

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Reference42 articles.

1. Home Appliance Identification for NILM systems based on deep neural network;D. deP. Penha;International Journal of Artificial Intelligence and Applications (IJAIA),2018

2. Multivariate event detection methods for non-intrusive load monitoring in smart homes and residential buildings

3. Neural NILM

4. Appliance classification using VI trajectories and convolutional neural networks

5. Data augmentation for improving deep learning image classification problem;A. Mikolajczyk,2018

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3