Affiliation:
1. Department of Physics, Chongqing Three Gorges University, Wanzhou 404100, China
2. School of Information Engineering, Hubei Minzu University, Enshi City 445000, China
Abstract
Spin caloritronic devices, as multifunctional devices, combining spintronics, and caloritronics, are essential for the sustainable development of humans. Here, a novel spin caloritronic device is presented using a diarylethene molecule photoswitch sandwiched among two semi-infinite zigzag graphene nanoribbons containing asymmetrical edge hydrogenation electrodes. We demonstrate that the temperature gradient between the right and the left electrodes can generate spin-up (SU) and spin-down (SD) currents moving in opposite orientations. Moreover, the mentioned currents possess approximately the same magnitudes, indicating a nearly nondissipative spin Seebeck effect. We also find that these currents are significantly dissimilar for the two photochromic isomers at different temperature gradients, demonstrating the excellent system’s switching nature. The obtained results reveal that the light can control the thermal spin transport properties.
Funder
National Natural Science Foundation of China
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献