Finite-Time Admissibility and Controller Design for T-S Fuzzy Stochastic Singular Systems with Distinct Differential Term Matrices

Author:

Qiao Liang12ORCID,Lv Zhaomin3ORCID

Affiliation:

1. Shunde Graduate School of University of Science and Technology Beijing, Beijing, China

2. Key Laboratory of Knowledge Automation for Industrial Processes of Ministry of Education, School of Automation and Electrical Engineering, University of Science and Technology Beijing, Beijing, China

3. School of Urban Railway Transportation, Shanghai University of Engineering Science, Shanghai, China

Abstract

The finite-time admissibility analysis and controller design issues for extended T-S fuzzy stochastic singular systems (FSSSs) with distinct differential term matrices and Brownian parameter perturbations are discussed. When differential term matrices are allowed to be distinct in fuzzy rules, such fuzzy models can describe a wide class of nonlinear stochastic systems. Using fuzzy Lyapunov function (FLF), a new and relaxed sufficient condition is proposed via strict linear matrix inequalities (LMIs). Different from the existing stability conditions by FLF, the derivative bounds of fuzzy membership functions are not required in this condition. Based on admissibility analysis results, a design method for parallel distribution compensation (PDC) controller of FSSSs is given to guarantee the finite-time admissibility of the closed-loop system. Finally, the feasibility and effectiveness of the proposed methods in this article are illustrated with three examples.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Finite-Time Control of T-S Fuzzy Stochastic Nonlinear Systems;2023 42nd Chinese Control Conference (CCC);2023-07-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3