Fast Global Minimization of the Chan–Vese Model for Image Segmentation Problem

Author:

Gao Ran1ORCID,Guo Li-Zhen2ORCID

Affiliation:

1. College of Science, Zhongyuan University of Technology, Zhengzhou 450007, China

2. School of Mathematics and Statistics, Henan University, Kaifeng 475001, China

Abstract

The segmentation of weak boundary is still a difficult problem, especially sensitive to noise, which leads to the failure of segmentation. Based on the previous works, by adding the boundary indicator function with L 2,1 norm, a new convergent variational model is proposed. A novel strategy for the weak boundary image is presented. The existence of the minimizer for our model is given, by using the alternating direction method of multipliers (ADMMs) to solve the model. The experiments show that our new method is robust in segmentation of objects in a range of images with noise, low contrast, and direction.

Funder

Henan Province Natural Science Foundation Project

Publisher

Hindawi Limited

Subject

Modeling and Simulation

Reference35 articles.

1. A fast algorithm for image deblurring with total variation regularization;Y. Wang;Mathematics,2007

2. Improved mean shift segmentation approach for natural images

3. Generalized total variation-based MRI Rician denoising model with spatially adaptive regularization parameters

4. Implementation of high-order variational models made easy for image processing;W. Liu;Mathematical Methods in the Applied Sciences,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3