The effect of lunar declination on CO<sub>2 </sub>degassing from central Italian Apennines

Author:

Zuddas Pierpaolo,Lopes Fernando

Abstract

<p>The periodical degassing from CO<sub>2</sub> over-pressured reservoirs may have serious consequences for the environment making urgent understanding the processes and forecasting the frequency. Prediction though needs methods that depends from temporal and spatial properties of hydro-chemical and physical reservoir characteristics that unfortunately are often lacking. We have analyzed surface emissions of CO<sub>2</sub> attributed to over-pressured CO<sub>2</sub>-rich reservoirs in the Central Italian Apennines a zone characterized by significant periodical CO<sub>2</sub> degassing. Here aquifers are hosted in Mesozoic limestone with high pCO<sub>2</sub> groundwater and travertine deposits. We analyzed a 10-year temporal series and found that in the Apennines CO<sub>2</sub> flux and aquifer fluid composition are correlated with the lunar tides. In particular, our study reveals that low CO<sub>2</sub> flux corresponds with low lunar tidal potential values. We found a similar trend for dissolved calcium and water alkalinity, while pH values display a linear correlation with tidal cycles. The forces associated with tidal potentials are not capable of fracturing rock. However, they can, under certain conditions, drive the flow of fluids in over-pressured reservoirs, triggering sub-surface fluid movements that in turn modify the water�Crock reactivity. In the central Apennines, we show that these movements result in increased dolomite dissolution and an eventual return to calcite equilibrium. In this case, dolomite dissolution breaks the rock releasing calcium into ground water, which leads to calcite equilibrium and in turn to the formation of significant quantities of travertine and the concomitant release of CO<sub>2</sub> in the atmosphere.</p>

Publisher

Innovation Press Co., Limited

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3