Trends and challenges of the interactions between microclimate and electric power systems

Author:

Li Canbing,Cheng Yu,Xue Yusheng,Li Ran,Xue Feng,Chang Kang,Liu Jianzhe,Tai Nengling,Huang Wentao,Xu Yufei,Pan Dounan

Abstract

<p>The increasing penetration of renewables has made electric power systems meteorology-sensitive. Meteorology has become one of the decisive factors and the key source of uncertainty in the power balance. Macro-scale meteorology might not fully represent the actual ambient conditions of the loads, renewables, and power equipment, thus hindering an accurate description of load and renewables output fluctuation, and the causes of power equipment ageing and failure. Understanding the interactions between microclimate and electric power systems, and making decisions grounded on such knowledge, is a key to realising the sustainability of the future electric power systems. This review explores key interactions between microclimate and electric power systems across loads, renewables, and connecting transmission lines. The microclimate-based applications in electric power systems and related technologies are described. We also provide a framework for future research on the impact of microclimate on electric power systems mainly powered by renewables.</p>

Publisher

Innovation Press Co., Limited

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3