Dynamic functional connectivity assesses the progression of Parkinson��s disease

Author:

Li Zhibao,Chen Wei,Zeng Xiaoyu,Ni Jun,Guo Yuzhu,Zhang Hua,Li Yang,Ma Yina,Meng Fangang

Abstract

<p>Parkinson��s disease (PD) induces functional connectivity (FC) changes during its course. However, the impact of PD progression on the temporal properties of FC remains ambiguous. In the current study, we aimed to uncover longitudinal shifts in dynamic FC (DFC) temporal properties of brain networks during PD progression, proposing a novel biomarker for PD progression evaluation. We conducted a longitudinal study on 45 PD patients from the Parkinson��s Progression Markers Initiative database. Patients underwent dual-timepoint neurological assessments and resting-state fMRI scans at baseline and 1-4 years of subsequent follow-up. The sliding-window technique and k-means clustering were employed to scrutinize DFC patterns of the entire brain network, including individual cortical subnetworks and subcortical nuclei (SN) at every timepoint. From this analysis, DFC analyses revealed two predominant states: a high-frequency sparse FC state and a low-frequency intense FC state. For the entire brain network, the mean dwell time (MDT) in the sparse FC state diminished with PD progression, and this decrease was closely tied to motor deterioration. Concerning cortical subnetworks and SN, MDTs in the sparse FC state reduced at the second timepoint in both visual (VN) and limbic networks (LN) linked with the SN. The MDT reduction in LN-SN positively correlated with cognitive decline, while the MDT reduction in VN-SN showed a strong link with motor degradation. These results emphasize that DFC might offer insights into the evolving brain dynamics in PD patients over the disease's course, underscoring its prospective utility as a progression biomarker.</p>

Publisher

Innovation Press Co., Limited

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3