1. Bertacco, E. K. , Calonico, D. , Cantoni, E. , Cerretto, G. , Costa, R. , Fiasca, F. , Formichella, V. , Levi, F. , Mura, A. , Perucca, A. , Pizzocaro, M. , Pollastri, F. , Sellone, M. , Sesia, I. , Signorile, G. , Terzi, P. , Thai, T. T. , Costanzo, G. A. , & Rovera, G. D. (2020). Latest improvements at INRIM time laboratory. Proc. of the 51st Annual Precise Time and Time Interval Systems and Applications Meeting, San Diego, CA, 159–168. https://doi.org/10.33012/2020.17296
2. Brown, K. R. (1991). The theory of the GPS composite clock. Proc. of the 4th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GPS 1991), Albuquerque, NM, 223–242. https://www.ion.org/publications/abstract.cfm?articleID=4867
3. European Space Agency (ESA) . (n.d.) Galileo system. https://www.esa.int/Applications/Navigation/Galileo/Galileo_system
4. Felbach, D. , Heimbuerger, D. , Herre, P. , & Rastetter, P. (2003). Galileo payload 10.23 MHz master clock generation with a Clock Monitoring and Control Unit (CMCU). IEEE International Frequency Control Symposium and PDA Exhibition Jointly with 17th European Frequency and Time Forum, Tampa, FL, 583–586. https://doi.org/10.1109/FREQ.2003.1275156
5. Detection of atomic clock frequency jumps with Kalman filter.;Galleani;IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control,2012