Author:
von Wild Tobias, ,Brunelli Giorgio A.,von Wild Klaus R.H.,Löhnhardt Marlene,Catoi Cornel,Florinela Catoi Adriana,Vester Johannes C.,Strilciuc Stefan,Trillenberg Peter, , , , , , , , , , ,
Abstract
The restoration of voluntary muscle activity in posttraumatic paraplegia in both animal experiments and other clinical applications requires reproducibility of a technically-demanding microsurgical procedure, limited by physicians’ understanding of Brunelli’s spinal cord grafting paradigm. The insufficient clinical investigation of the long-term benefits of the CNS-PNS graft application warrants additional inquiry.
The objective of this study is to explore the potential benefits of the first replicated, graft-induced neuroregeneration of denervated skeletal muscle regarding long-term clinical outcomes and to investigate the effect of Cerebrolysin on neuromodulation.
A randomized study evaluating 30 rats, approved by the National Animal Ethics Advisory Committee was performed. The medication was administered postoperatively. For 14 days, 12 rats received Cerebrolysin (serum), 11 received NaCl 0.9% (shams), and 7 were controls. For microsurgery, the lateral corticospinal tract T10 was grafted to the denervated internal obliquus abdominal muscle. On day 90, intraoperative proof of reinnervation was observed. On day 100, 15 rats were euthanized for fixation, organ removal, and extensive histology-morphology examination, and the Wei-Lachin statistical procedure was employed.
After an open revision of 16 rats, 8 were CMAP positive. After intravenous Vecuronium application, two (Cerebrolysin, NaCl) out of two rats showed an incomplete compound muscle action potential (CMAP) loss due to glutamatergic and cholinergic co-transmission, while two others showed a complete loss of amplitude.
Cerebrolysin medication initiated larger restored muscle fiber diameters and less scarring. FB+ neurons were not observed in the brain but were observed in the Rexed laminae.
Brunelli’s concept was successfully replicated, demonstrating the first graft induced existence of cholinergic and glutamatergic neurotransmission in denervated grafted muscles. Statistics of the histometric count of muscle fibers revealed larger fiber diameters after Cerebrolysin.
Brunelli’s CNS-PNS experimental concept is suitable to analyze graft-neuroplasticity focused on the voluntary restoration of denervated skeletal muscles in spinal cord injury. Neuroprotection by Cerebrolysin is demonstrated.
Publisher
S.C. JURNALUL PENTRU MEDICINA SI VIATA S.R.L
Reference61 articles.
1. Brunelli GA. Direct neurotization of muscles by presynaptic motoneurons. J Reconstructive microsurgery 2001:17: 631-636
2. Brunelli G, Spano PF, Barlati S, et al. Glutamatergic reinnervation through peripheral nerve graft dictates assembly of glutamatergic synapses at rat skeletal muscle. PNAS. 2005;120: 8752-8757
3. Pizzi M, Brunelli G, Barlati S, et al. Glutamatergic innervation of rat skeletal muscle by supraspinal neurons: a new paradigm in spinal cord injury repair. Curr Opin Neurobiol 2006; 16: 323-328
4. Brunelli G, Wild K v. Unsuspected plasticity of single neurons after connection of the corticospinal tract with peripheral nerves in spinal cord lesions. J Reconstr Microsurg. 2008: 24(4):301-4 doi: 10.1055/s-2008-1078688. Epub 2008 Jun 17 12.
5. Health-Related Quality of Life (HRQOL) National Center for Chronic Disease Prevention and Health Promotion , Division of Population; health page last reviewed: October 31, 2018, https://www.cdc.gov/hrqol/index.htm
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献