A review of the geology and origin of CO2 in mineral water springs in east Belgium
-
Published:2020-11-26
Issue:1-2
Volume:24
Page:17-31
-
ISSN:2034-1954
-
Container-title:Geologica Belgica
-
language:
-
Short-container-title:Geol. Belg.
Author:
BARROS RENATA1ORCID, DEFOURNY AGATHE2, COLLIGNON ARNAUD3, JOBE Patrick3, DASSARGUES Alain4ORCID, PIESSENS KRIS1, WELKENHUYSEN KRIS1
Affiliation:
1. Royal Belgian Institute of Natural Sciences, Geological Survey of Belgium, Jennerstraat 13, 1000 Brussels, Belgium. 2. University of Liège, Hydrogeology, Urban and Environmental Engineering, Quartier Polytech 1, Allée de la Découverte, 9, Bât. B52 - Sart Tilman 4000 Liège, Belgium; Spadel S.A., Water resource department, Rue Auguste Laporte 34, B-4900 Spa, Belgium. 3. Spadel S.A., Water resource department, Rue Auguste Laporte 34, B-4900 Spa, Belgium. 4. University of Liège, Hydrogeology, Urban and Environmental Engineering, Quartier Polytech 1, Allée de la Découverte, 9, Bât. B52 - Sart Tilman 4000 Liège, Belgium.
Abstract
Naturally CO2-rich mineral water springs (pouhons) in east Belgium occur in the context of the Rhenohercynian domain of the Variscan fold-and-thrust belt, mostly within the Cambro-Ordovician Stavelot-Venn Massif. The origin of the CO2 is still unclear, although different hypotheses exist. In this review study, we show pouhon waters are of the calcium bicarbonate type (~310 mg/l HCO3- on average), with notable Fe (~15 mg/l) and some Ca (~43 mg/l). Pouhon waters are primarily meteoric waters, as evidenced by H and O isotopic signature. The δ13C of CO2 varies from -7.8 to +0.8‰ and contains up to ~15% He from magmatic origin, reflecting a combination of carbonate rocks and mantle as CO2 sources at depth. Dinantian and Middle Devonian carbonates at 2–6 km depth could be potential sources, with CO2 generated by dissolution. However, carbonates below the Stavelot-Venn Massif are only predicted by structural models that assume in-sequence thrusting, not by the more generally accepted out-of-sequence thrust models. The mantle CO2 might originate from degassing of the Eifel magmatic plume or an unknown shallower magmatic reservoir. Deep rooted faults are thought to act as preferential pathways. Overall low temperatures of pouhons (~10 °C) and short estimated residence times (up to 60 years) suggest magmatic CO2 is transported upwards to meet infiltrating groundwater at shallower depths, with partial to full isotopic exchange with carbonate rocks along its path, resulting in mixed magmatic-carbonate signature. Although the precise role and interaction of the involved subsurface processes remains debatable, this review study provides a baseline for future investigations.
Funder
Horizon 2020 Framework Programme Service Public de Wallonie
Publisher
Geologica Belgica
Subject
Earth and Planetary Sciences (miscellaneous)
Reference87 articles.
1. Aeschbach-Hertig, W., Kipfer, R., Hofer, M., Imboden, D.M., Wieler, R., Signer, P., 1996. Quantification of gas fluxes from the subcontinental mantle: the example of Laacher See, a maar lake in Germany. Geochimica et Cosmochimica Acta, 60, 31–41. https://doi.org/10.1016/0016-7037(95)00370-3 2. Asselbergs, E., 1946. L'Eodévonien de l'Ardenne et des régions voisines. Mémoire de l'Institut géologique de l'Université de Louvain, 14, 1–598. 3. Babuska, V. & Plomerova, J., 1992. The lithosphere in central Europe - seismological and petrological aspects. Tectonophysics, 207, 141–164. https://doi.org/10.1016/0040-1951(92)90475-L 4. Belanger, I., Delaby, S., Delcambre, B., Ghysel, P., Hennebert, M., Laloux, M., Marion, J.-M., Mottequin, B. & Pingot, J.-L., 2012. Redéfinition des unités structurales du front varisque utilisées dans le cadre de la nouvelle Carte géologique de Wallonie (Belgique). Geologica Belgica, 15, 169–175. 5. Bickle, M. & Kampman, N., 2013. Lessons in carbon storage from geological analogues. Geology, 41, 525–526. https://doi.org/10.1130/focus0420132.1
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|