DNA-SEnet: A convolutional neural network for classifying DNA-asthma associations

Author:

Bubby Siva,Chrisman Brianna

Abstract

Asthma is a complex disease with a growing global prevalence whose genetic causes remain largely unexplored. The rise of next-generation sequencing has significantly augmented genetic studies in identifying asthma-associated mutations, the most common of which are single nucleotide polymorphisms (SNPs). Population-based and biochemical analyses have been used to identify novel disease-associated loci and their biological consequences; however, SNPs alone do not explain the mechanisms of asthma nor do they offer a context to evaluate candidate SNP-asthma associations. To this end, we developed a model named DNA Sequence Embedding Network (DNA-SEnet) to classify DNA-asthma associations using their genomic patterns. The hypotheses of this study are that DNA-asthma associations can be discerned through high-dimensional vector representations of DNA sequences around SNPs, that these features can be applied to determine novel SNP-asthma associations, and that this model can be generalized to predict SNP-disease associations for other complex traits. On average, this model achieved an Area Under the Curve (AUC) equaling 0.81 when learning and classifying DNA-asthma associations. Additionally, DNA-SEnet corroborated previous studies’ SNP-asthma connections and proposed two novel asthma-linked loci based on their surrounding semantic properties. Moreover, DNA-SEnet effectively learned DNA-disease associations when applied to sequence data regarding coronary heart disease, type 2 diabetes mellitus, and rheumatoid arthritis. Therefore, this model can be used to identify novel disease-associated sequences across various disease types.

Publisher

The Journal of Emerging Investigators, Inc.

Subject

General Medicine,General Earth and Planetary Sciences,General Environmental Science,General Medicine,Ocean Engineering,General Medicine,General Medicine,General Medicine,General Medicine,General Earth and Planetary Sciences,General Environmental Science,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3