Evaluation of a novel CFTR potentiator in copd ferrets with acquired cftr dysfunction

Author:

Kaza Niroop,Lin Vivian Y.,Stanford Denise,Hussain Shah S.ORCID,Libby Emily Falk,Kim HarrisonORCID,Borgonovi Monica,Conrath Katja,Mutyam Venkateshwar,Byzek Stephen A.,Tang Li Ping,Trombley John E.,Rasmussen Lawrence,Schoeb Trenton,Leung Hui Min,Tearney Guillermo J.,Raju S. VamseeORCID,Rowe Steven M.ORCID

Abstract

Rationale.The majority of chronic obstructive pulmonary disease (COPD) patients have chronic bronchitis, for which specific therapies are unavailable. Acquired cystic fibrosis transmembrane conductance regulator (CFTR) dysfunction is observed in chronic bronchitis, but has not been proven in a controlled animal model with airway disease. Furthermore, the potential of CFTR as a therapeutic target has not been tested in vivo, given limitations to rodent models of COPD. Ferrets exhibit cystic fibrosis-related lung pathology when CFTR is absent and COPD with bronchitis following cigarette smoke exposure.Objectives.To evaluate CFTR dysfunction induced by smoking and test its pharmacologic reversal by a novel CFTR potentiator, GLPG2196, in a ferret model of COPD with chronic bronchitis.Methods.Ferrets were exposed for six months to cigarette smoke to induce COPD and chronic bronchitis and then treated with eneral GLPG2196 once daily for one month. Electrophysiologic measurements of ion transport and CFTR function, assessment of mucociliary function by one-micron optical coherence tomography imaging and particle tracking microrhelogy, microcomputed tomography imaging, histopathological analysis, and quantification of CFTR protein and mRNA expression were used to evaluate mechanistic and pathophysiological changes.Measurements and Main Results.Following cigarette smoke exposure, ferrets exhibited CFTR dysfunction, increased mucus viscosity, delayed mucociliary clearance, airway wall thickening, and airway epithelial hypertrophy. In COPD ferrets, GLPG2196 treatment reversed CFTR dysfunction, increased mucus transport by decreasing mucus viscosity, and reduced brochial wall thickening and airway epithelial hypertrophy.Conclusions.The pharmacologic reversal of acquired CFTR dysfunction is beneficial against pathologic features of chronic bronchitis in a COPD ferret model.

Funder

National Institutes of Health

National Institute of Diabetes and Digestive and Kidney Diseases

Publisher

European Respiratory Society (ERS)

Subject

Pulmonary and Respiratory Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3