Inhaled diesel exhaust alters the allergen-induced bronchial secretome in humans

Author:

Mookherjee Neeloffer,Piyadasa Hadeesha,Ryu Min Hyung,Rider Christopher Francis,Ezzati Peyman,Spicer Victor,Carlsten Christopher

Abstract

Diesel exhaust (DE) is a paradigm for traffic-related air pollution. Human adaptation to DE is poorly understood and currently based on oversimplified models. DE promotes allergic responses, but protein expression changes mediated by this interaction have not been systematically investigated. The aim of this study was to define the effect of inhaled DE on allergen-induced proteins in the lung.We performed a randomised and blinded controlled human crossover exposure study. Participants inhaled filtered air or DE; thereafter, contralateral lung segments were challenged with allergen or saline. Using label-free quantitative proteomics, we comprehensively defined DE-mediated alteration of allergen-driven secreted proteins (secretome) in bronchoalveolar lavage. We further examined expression of proteins selected from the secretome data in independent validation experiments using Western blots, ELISA and immunohistochemistry.We identified protein changes unique to co-exposure (DE+allergen), undetected with mono-exposures (DE or allergen alone). Validation studies confirmed that specific proteins (e.g.the antimicrobial peptide cystatin-SA) were significantly enhanced with DE+allergen compared to either mono-exposure.This study demonstrates that common environmental co-exposures can uniquely alter protein responses in the lungs, illuminating biology that mono-exposures cannot. This study highlights the value of complex humanin vivomodels in detailing airway responses to inhaled pollution.

Funder

AllerGen

Mitacs

British Columbia Lung Association

Canadian Institutes of Health Research

Publisher

European Respiratory Society (ERS)

Subject

Pulmonary and Respiratory Medicine

Reference38 articles.

1. Diesel exhaust: current knowledge of adverse effects and underlying cellular mechanisms;Steiner;Arch Toxicol,2016

2. Respiratory Effects of Exposure to Diesel Traffic in Persons with Asthma

3. Urban vs. rural factors that affect adult asthma;Jie;Rev Environ Contam Toxicol,2013

4. Ambient wood smoke, traffic pollution and adult asthma prevalence and severity;Bui;Respirology,2013

5. Long-term effects of diesel exhaust particles on airway inflammation and remodeling in a mouse model;Kim;Allergy Asthma Immunol Res,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3