Abstract
BackgroundPulmonary alveolar microlithiasis (PAM) is caused by genetic variants in the SLC34A2 gene, which encodes the sodium-dependent phosphate transport protein 2B (NaPi-2b). PAM is characterised by deposition of calcium phosphate concretions (microliths) in the alveoli leading to pulmonary dysfunction. The variant spectrum of SLC34A2 has not been well investigated and it is not yet known whether a genotype–phenotype correlation exists.MethodsWe collected DNA from 14 patients with PAM and four relatives, and analysed the coding regions of SLC34A2 by direct DNA sequencing. To determine the phenotype characteristics, clinical data were collected and a severity score was created for each variant, based on type and localisation within the protein.ResultsWe identified eight novel allelic variants of SLC34A2 in 14 patients with PAM. Four of these were nonsense variants, three were missense and one was a splice site variant. One patient was heterozygous for two different variants and all other patients were homozygous. Four patients were asymptomatic and 10 patients were symptomatic. The severity of the disease was associated with the variant severity.ConclusionsOur findings support a significant role for SLC34A2 in PAM and expand the variant spectrum of the disease. Thus, SLC34A2 variants were detected in all patients and eight novel allelic variants were discovered. An association between disease severity and the severity of the variants was found; however, this needs to be investigated in larger patient populations.
Funder
A.P. Møller og Hustru Chastine Mc-Kinney Møllers Fond til almene Formaal
MEMBRANES Aarhus University
Aarhus Universitet
LAM Foundation
Novo Nordisk Fonden
Region Midtjylland
Publisher
European Respiratory Society (ERS)
Subject
Pulmonary and Respiratory Medicine
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献