Highly sensitive and specific diagnosis of COVID-19 by reverse transcription multiple cross-displacement amplification-labelled nanoparticles biosensor

Author:

Li Shijun,Jiang Weijia,Huang Junfei,Liu Ying,Ren Lijuan,Zhuang Li,Zheng Qinni,Wang Ming,Yang Rui,Zeng Yi,Wang Yi

Abstract

BackgroundThe ongoing outbreak of the novel human coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) (also known as 2019-nCoV) has become a global health concern. Rapid and easy-to-use diagnostic techniques are urgently needed to diagnose SARS-CoV-2 infection.MethodsWe devised a reverse transcription multiple cross-displacement amplification (RT-MCDA) coupled with a nanoparticle-based biosensor assay (RT-MCDA-BS) for rapid, sensitive and specific diagnosis of coronavirus disease 2019 (COVID-19). Two primer sets were designed to target the open reading frame 1a/b and nucleoprotein gene of SARS-CoV-2. A total of 183 clinical samples, including 65 patients with COVID-19 infection and 118 patients with other pathogen infections were used to testify the assay's feasibility. Diagnosis results were reported visually using the biosensor.FindingsThe assay designed was performed using a simple instrument which could maintain the reaction in a constant temperature at 64°C for only 35 min. The total COVID-19 RT-MCDA-BS test procedure could be finished within 1 h. The COVID-19 RT-MCDA-BS could detect down to five copies of target sequences. Among 65 clinical samples from the COVID-19 patients, 22 (33.8%) positive results were obtained from faeces, nasal, pharyngeal and anal swabs via COVID-19 RT-MCDA-BS assay, while real-time reverse transcription-PCR assay only detected 20 (30.7%) positive results in these samples. No positive results were obtained from clinical samples with non-COVID-19 infections.InterpretationCOVID-19 RT-MCDA-BS was a rapid, reliable, low-cost and easy-to-use assay, which could provide an attractive laboratory tool to diagnose COVID-19 in multiple clinical specimens, especially for field, clinic laboratories and primary care facilities in resource-poor settings.

Funder

Qian Ke He Platform talent

Qian Ke He

Qian Ke He Support Plan

Qian Ke He Platform

Publisher

European Respiratory Society (ERS)

Subject

Pulmonary and Respiratory Medicine

Reference16 articles.

1. An emerging coronavirus causing pneumonia outbreak in Wuhan, China: calling for developing therapeutic and prophylactic strategies;Jiang;Emerg Microbes Infect,2020

2. The clinical dynamics of 18 cases of COVID-19 outside of Wuhan, China

3. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China

4. World Health Organization (WHO) . Coronavirus Disease (COVID-19) Situation Report – 129. 2020. www.who.int/docs/default-source/coronaviruse/situation-reports/20200528-covid-19-sitrep-129.pdf?sfvrsn=5b154880_2

5. The reproductive number of COVID-19 is higher compared to SARS coronavirus;Liu;J Travel Med,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3