Mechanical ventilation promotes lung tumor spread by modulation of cholesterol cell content

Author:

López-Alonso Inés,López-Martínez Cecilia,Martín-Vicente Paula,Amado-Rodríguez Laura,González-López Adrián,Mayordomo-Colunga Juan,del Busto Cecilia,Bernal Marina,Crespo Irene,Astudillo Aurora,Arias-Guillén Miguel,Fueyo Antonio,Almendros IsaacORCID,Otero Jorge,Sanz-Fraile Héctor,Farré Ramón,Albaiceta Guillermo MORCID

Abstract

Mechanical stretch of cancer cells can alter their invasiveness. During mechanical ventilation, lungs may be exposed to an increased amount of stretch, but the consequences on lung tumors have not been explored. To characterize the influence of mechanical ventilation on the behavior of lung tumors, invasiveness assays and transcriptomic analyses were performed in cancer cell lines cultured in static conditions or under cyclic stretch. Mice harbouring lung melanoma implants were submitted to mechanical ventilation and metastatic spread was assessed. Additional in vivo experiments were performed to determine the mechano-dependent specificity of the response. Incidence of metastases was studied in a cohort of lung cancer patients that received mechanical ventilation compared with a matched group of non-ventilated patients. Stretch increases invasiveness in melanoma B16F10luc2 and lung adenocarcinoma A549 cells. We identified a mechanosensitive upregulation of pathways involved in cholesterol processing in vitro, leading to an increase in PCSK9 and LDLR expression, a decrease in intracellular cholesterol and preservation of cell stiffness. A course of mechanical ventilation in mice harboring melanoma implants increased brain and kidney metastases two weeks later. Blockade of PCSK9 using a monoclonal antibody increased cell cholesterol and stiffness and decreased cell invasiveness in vitro and metastasis in vivo. In patients, mechanical ventilation increased PCSK9 abundance in lung tumors and the incidence of metastasis, thus decreasing survival. Our results suggest that mechanical stretch promote invasiveness of cancer cells, which may have clinically relevant consequences. Pharmacological manipulation of cholesterol endocytosis could be a novel therapeutic target in this setting.

Funder

Centro de Investigación Biomédica en Red en Enfermedades Respiratorias

Ministerio de Ciencia, Innovación y Universidades

Instituto de Salud Carlos III

Publisher

European Respiratory Society (ERS)

Subject

Pulmonary and Respiratory Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3