Novel mechanisms of action contributing to Benralizumab's potent anti-eosinophilic activity

Author:

Dagher RaniaORCID,Kumar Varsha,Copenhaver Alan M.,Gallagher Sandra,Ghaedi Mahboobe,Boyd Jonathan,Newbold Paul,Humbles Alison A.,Kolbeck Roland

Abstract

Benralizumab is a humanised, anti-IL-5Rα monoclonal antibody with anti-eosinophilic activity. Lack of fucose (afucosylation) increases its affinity to CD16a and significantly enhances antibody-dependent cell-mediated cytotoxicity (ADCC) by NK cells. Although benralizumab proved clinically efficacious in clinical trials for patients with severe asthma and hypereosinophilic syndrome, in-depth characterisation of its anti-eosinophilic mechanisms of action remain elusive. Here, we further investigated the mechanisms involved in benralizumab's anti-eosinophilic activities. In the presence of NK cells benralizumab induced potent eosinophil apoptosis as demonstrated by the upstream induction of caspase 3/7 and upregulation of cytochrome C. In addition, we uncovered a previously unrecognised mechanism whereby benralizumab can induce eosinophil phagocytosis/efferocytosis by macrophages, a process called antibody-dependent cell phagocytosis (ADCP). Using live cell imaging we unravel the stepwise processes leading to eosinophil apoptosis and uptake by activated macrophages. Through careful observations of cellular co-culture assays we identified a novel role for macrophage derived TNF to further enhance benralizumab-mediated eosinophil apoptosis through activation of TNF-receptor 1 on eosinophils. TNF-induced eosinophil apoptosis was associated with Cytochrome C upregulation, mitochondrial membrane depolarisation, and increased caspase 3/7 activity. Moreover, activated NK cells were found to amplify this axis through the secretion of IFNγ, subsequently driving TNF expression by macrophages. Our data provide insights into the timely appearance of events leading to benralizumab-induced eosinophil apoptosis and suggest that additional mechanisms may contribute to the potent anti-eosinophilic activity of benralizumab in vivo. Importantly, afucosylation of benralizumab strongly enhanced its potency for all mechanisms investigated.

Publisher

European Respiratory Society (ERS)

Subject

Pulmonary and Respiratory Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3