Identification of potentially undiagnosed patients with nontuberculous mycobacterial lung disease using machine learning applied to primary care data in the UK

Author:

Doyle Orla M.ORCID,van der Laan Roald,Obradovic Marko,McMahon Peter,Daniels Flora,Pitcher Ashley,Loebinger Michael R.

Abstract

Nontuberculous mycobacterial lung disease (NTMLD) is a rare lung disease often missed due to a low index of suspicion and unspecific clinical presentation. This retrospective study was designed to characterise the prediagnosis features of NTMLD patients in primary care and to assess the feasibility of using machine learning to identify undiagnosed NTMLD patients.IQVIA Medical Research Data (incorporating THIN, a Cegedim Database), a UK electronic medical records primary care database was used. NTMLD patients were identified between 2003 and 2017 by diagnosis in primary or secondary care or record of NTMLD treatment regimen. Risk factors and treatments were extracted in the prediagnosis period, guided by literature and expert clinical opinion. The control population was enriched to have at least one of these features.741 NTMLD and 112 784 control patients were selected. Annual prevalence rates of NTMLD from 2006 to 2016 increased from 2.7 to 5.1 per 100 000. The most common pre-existing diagnoses and treatments for NTMLD patients were COPD and asthma and penicillin, macrolides and inhaled corticosteroids. Compared to random testing, machine learning improved detection of patients with NTMLD by almost a thousand-fold with AUC of 0.94. The total prevalence of diagnosed and undiagnosed cases of NTMLD in 2016 was estimated to range between 9 and 16 per 100 000.This study supports the feasibility of machine learning applied to primary care data to screen for undiagnosed NTMLD patients, with results indicating that there may be a substantial number of undiagnosed cases of NTMLD in the UK.

Funder

Insmed

Publisher

European Respiratory Society (ERS)

Subject

Pulmonary and Respiratory Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3