Acute air pollution exposure alters neutrophils in never-smokers and at-risk humans

Author:

Wooding Denise J.,Ryu Min Hyung,Li Hang,Alexis Neil E.,Pena Olga,Carlsten Chris

Abstract

Outdoor air pollution exposure increases chronic obstructive pulmonary disease (COPD) hospitalisations, and may contribute to COPD development. The mechanisms of harm, and the extent to which at-risk populations are more susceptible are not fully understood. Neutrophils are recruited to the lung following diesel exhaust exposure, a model of traffic-related air pollution (TRAP), but their functional role in this response is unknown. The purpose of this controlled human-exposure crossover study was to assess the effects of acute diesel exhaust exposure on neutrophil function in never-smokers and at-risk populations, with support from additional in vitro studies.18 participants, including never-smokers (n=7), ex-smokers (n=4) and mild–moderate COPD patients (n=7), were exposed to diesel exhaust and filtered air for 2 h on separate occasions, and neutrophil function in blood (0 h and 24 h post-exposure) and bronchoalveolar lavage (24 h post-exposure) was assessed.Compared to filtered air, diesel exhaust exposure reduced the proportion of circulating band cells at 0 h, which was exaggerated in COPD patients. Diesel exhaust exposure increased the amount of neutrophil extracellular traps (NETs) in the lung across participants. COPD patients had increased peripheral neutrophil activation following diesel exhaust exposure. In vitro, suspended diesel exhaust particles increased the amount of NETs measured in isolated neutrophils. We propose NET formation as a possible mechanism through which TRAP exposure affects airway pathophysiology. In addition, COPD patients may be more prone to an activated inflammatory state following exposure.This is the first controlled human TRAP exposure study directly comparing at-risk phenotypes (COPD and ex-smokers) with lower-risk (never-smokers) participants, elucidating the human susceptibility spectrum.

Funder

WorkSafeBC

Natural Sciences and Engineering Research Council of Canada

Canadian Respiratory Research Network

Publisher

European Respiratory Society (ERS)

Subject

Pulmonary and Respiratory Medicine

Cited by 42 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3