Author:
Aarli Bernt B.,Calverley Peter M.A.,Jensen Robert L.,Eagan Tomas M.L.,Bakke Per S.,Hardie Jon A.
Abstract
The forced oscillation technique can identify expiratory flow limitation (EFL) when a large difference in inspiratory and expiratory reactance (ΔXrs) occurs. However, flow limitation can vary from breath to breath, and so we compared a multiple-breath ΔXrs approach to the traditional breath-by-breath assessment of EFL. We investigated the within- and between-day reproducibility and the factors that affect the size of ΔXrs when used as a continuous measurement over multiple breaths. In addition, we examined how multiple-breath ΔXrs relates to the sensation of breathlessness.425 moderate to very severe chronic obstructive pulmonary disease (COPD) patients and 229 controls were included. Spirometry and impedance measurements were performed on a MasterScope CT Impulse Oscillation System.Median ΔXrs approached zero in healthy controls with little variation between measurements. COPD patients generally had higher ΔXrs and higher variability. The COPD patients with ΔXrs >0.1 kPa·L−1·s−1 were prone to be more breathless and had a higher modified Medical Research Council dyspnoea scale score. In controls, the 95th percentile of ΔXrs was as low as 0.07 kPa·L−1·s−1.We describe a new method to assess EFL at a patient level and propose a cut-off, mean ΔXrs >0.1 kPa·L−1·s−1, as a way to identify COPD patients who are more likely to report dyspnoea.
Publisher
European Respiratory Society (ERS)
Subject
Pulmonary and Respiratory Medicine
Cited by
34 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献