Do turbines with servo-controlled speed improve continuous positive airway pressure generation?

Author:

Lofaso F,Heyer L,Leroy A,Lorino H,Harf A,Isabey D

Abstract

Nasal continuous positive airway pressure (CPAP) devices with a servo-mechanism to control pressure have recently been developed. We evaluated six such devices and three conventional systems in terms of effectiveness in maintaining constant pressure. Machines were tested with pressure levels of 5, 10 and 15 cmH2O. Dynamic behaviour was evaluated: 1) by calculating the imposed work of breathing during simulated breath generated by a sinusoidal pump; and 2) by following the fall in pressure after a transient flow of 1 l.s-1. Quasi-static behaviour was evaluated by simulating a predetermined air leak. Under dynamic conditions, work of breathing was lowest with one conventional nasal CPAP device and three servo-controlled nasal CPAP devices; whereas, the highest levels of work of breathing were recorded with two servo-controlled nasal CPAP devices. The pressure-time response to a transient flow yielded similar results, with a significant inverse correlation between pressure values observed after 300 ms and imposed work of breathing during simulated breathing (r = -0.91). Under quasi-static conditions, microprocessor servo-controlled devices exhibited the best performance. These results suggest that microprocessor servo-controlled nasal CPAP devices are not always the best systems for maintaining constant airway pressure in dynamic situations. However, they are more effective in ensuring maintenance of the desired pressure in the event of an air leak at the mask.

Publisher

European Respiratory Society (ERS)

Subject

Pulmonary and Respiratory Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Design and implementation of a hybrid FLC + PID controller for pressure control of sleep devices;Biomedical Signal Processing and Control;2022-07

2. CPAP-Gerätevergleich unter standardisierten Bedingungen;Somnologie - Schlafforschung und Schlafmedizin;1997-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3