Abstract
Homozygosity for the SERPINA1 Z allele causes α1-antitrypsin deficiency, a rare condition that can cause lung and liver disease. However, the effects of Z allele heterozygosity on nonrespiratory phenotypes, and on lung function in the general population, remain unclear.We conducted a large, population-based study to determine Z allele effects on >2400 phenotypes in the UK Biobank (N=303 353).Z allele heterozygosity was strongly associated with increased height (β=1.02 cm, p=3.91×10−68), and with other nonrespiratory phenotypes including increased risk of gall bladder disease, reduced risk of heart disease and lower blood pressure, reduced risk of osteoarthritis and reduced bone mineral density, increased risk of headache and enlarged prostate, as well as with blood biomarkers of liver function. Heterozygosity was associated with higher height-adjusted forced expiratory volume in 1 s (FEV1) (β=19.36 mL, p=9.21×10−4) and FEV1/forced vital capacity (β=0.0031, p=1.22×10−5) in nonsmokers, whereas in smokers, this protective effect was abolished. Furthermore, we show for the first time that sex modifies the association of the Z allele on lung function.We conclude that Z allele heterozygosity and homozygosity exhibit opposing effects on lung function in the UK population, and that these associations are modified by smoking and sex. In exploratory analyses, heterozygosity for the Z allele also showed pleiotropic associations with nonrespiratory health-related traits and disease risk.
Funder
Asthma UK
NIHR Nottingham Biomedical Research Centre
UK Research and Innovation
Wellcome Trust
British Lung Foundation
Medical Research Council
University of Bristol
NIHR Bristol Biomedical Research Centre
GlaxoSmithKline
Cancer Research UK
Publisher
European Respiratory Society (ERS)
Subject
Pulmonary and Respiratory Medicine
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献