Increased myofibroblasts in the small airways and relation to remodelling and functional changes in smokers and COPD patients: potential role of epithelial-mesenchymal transition (EMT)

Author:

Eapen Mathew SujiORCID,Lu Wenying,Hackett Tillie L.,Singhera Gurpreet Kaur,Mahmood Malik Q.,Hardikar Ashutosh,Ward Chris,Walters Eugene Haydn,Sohal Sukhwinder Singh

Abstract

IntroductionPrevious reports showed epithelial mesenchymal transition (EMT) as an active process that contributes to small airway (SA) fibrotic pathology. Myofibroblasts are highly active pro-fibrotic cells that secrete excessive and altered extracellular matrix (ECM). Here we relate SA myofibroblast presence with airway remodelling, physiology and EMT activity in smokers and COPD patients.MethodsLung resections from non-smoker controls (NC), normal lung function smokers (NLFS), COPD current (CS) and ex-smokers (ES) were stained with anti-human αSMA, collagen 1, and fibronectin. αSMA+ive cells were computed in reticular basement membrane (Rbm), lamina propria (LP), and adventitia and presented per mm of Rbm and mm2 of LP. Collagen-1 and fibronectin are presented as a percentage change from normal. All analysis including airway thickness were measured using Image-pro-plus 7.0.ResultsWe found an increase in sub-epithelial LP (especially) and adventitia thickness in all pathological groups compared to NC. Increases in αSMA+ive myofibroblasts were observed in sub-epithelial Rbm, LP, and adventitia in both the smoker and COPD groups compared to NCs. Further, the increase in the myofibroblast population in the LP was strongly associated with decrease in lung function, LP thickening, increase in ECM protein deposition, and finally EMT activity in epithelial cells.ConclusionsThis is the first systematic characterisation of small airway myofibroblasts in COPD based on their localisation, with statistically significant correlations between them and other pan-airway structural, lung function, and ECM protein changes. Finally, we suggest that EMT may be involved in such changes.

Funder

Rebecca L. Cooper Medical Research Foundation

Clifford Craig Foundation Launceston General Hospital

Cancer Council Tasmania

Publisher

European Respiratory Society (ERS)

Subject

Pulmonary and Respiratory Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3