Dynamic analysis of gene signatures in the progression of COPD

Author:

Jiang JunchaoORCID,Chen Shengsong,Yu Tao,Chang Chenli,Liu Jixiang,Ren XiaoxiaORCID,Niu Hongtao,Huang KeORCID,Li Baicun,Wang Chen,Yang Ting

Abstract

AimsOxidative stress is an important amplifying mechanism in COPD; however, it is unclear how oxidative stress changes and what its exact amplification mechanism is in the pathological process. We aimed to dynamically analyse the progression of COPD and further elucidate the characteristics of each developmental stage and unveil the underlying mechanisms.MethodsWe performed a holistic analysis by integrating Gene Expression Omnibus microarray datasets related to smoking, emphysema and Global Initiative for Chronic Obstructive Lung Disease (GOLD) classification based on the concept of gene, environment and time (GET). Gene ontology (GO), protein–protein interaction (PPI) networks and gene set enrichment analysis (GSEA) were used to explore the changing characteristics and potential mechanisms. Lentivirus was used to promoteHIF3Aoverexpression.ResultsIn smokersversusnonsmokers, the GO term mainly enriched in “negative regulation of apoptotic process”. In later transitions between stages, the main enriched terms were continuous progression of “oxidation-reduction process” and “cellular response to hydrogen peroxide”. Logistic regression showed that these core differentially expressed genes (DEGs) had diagnostic accuracy in test (area under the curve (AUC)=0.828) and validation (AUC=0.750) sets. GSEA and PPI networks showed that one of the core DEGs,HIF3A, strongly interacted with the ubiquitin-mediated proteolysis pathway. Overexpression ofHIF3Arestored superoxide dismutase levels and alleviated the reactive oxygen species accumulation caused by cigarette smoke extract treatment.ConclusionOxidative stress was continuously intensified from mild emphysema to GOLD 4; thus, special attention should be paid to the identification of emphysema. Furthermore, the downregulatedHIF3Amay play an important role in the intensified oxidative stress in COPD.

Funder

National High Level Hospital Clinical Research Funding

CAMS Innovation Fund for Medical Science

Publisher

European Respiratory Society (ERS)

Subject

Pulmonary and Respiratory Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3